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ABSTRACT

We have developed a combined feature based and shape based
visual tracking system designed to enable a planetary rover to
visually track and servo to specific points chosen by a user
with centimeter precision. The feature based tracker uses in-
variant feature detection and matching across a stereo pair,
as well as matching pairs before and after robot movement
in order to compute an incremental 6-DOF motion at each
tracker update. This tracking method is subject to drift over
time, which can be compensated by the shape based method.
The shape based tracking method consists of 3D model regis-
tration, which recovers 6-DOF motion given sufficient shape
and proper initialization. By integrating complementary al-
gorithms, the combined tracker leverages the efficiency and
robustness of feature based methods with the precision and
accuracy of model registration. In this paper, we present the
algorithms and their integration into a combined visual track-
ing system.
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1. INTRODUCTION

Goal level, single cycle activity commanding for planetary
rovers requires a high degree of robotic autonomy. The 2009
Mars Science Laboratory (MSL) rover will be required to
navigate to a scientifically relevant feature from a distance of
10 meters away and place a contact instrument within 1 cm of
the specified location. This capability will require the rover
to track specified points with centimeter precision and servo
directly to them. Because features are selected for scientific
relevance, they are not necessarily those features which best
facilitate appearanc- based visual tracking.

We have developed a combined feature based and shape based
visual tracking system that leverages the benefits of each
method in a complementary manner.

In order to handle large errors in platform motion prediction,
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reduce tracking frequency, and handle targets which do not
facilitate unambiguous appearance based matching, the sys-
tem uses one tracker which makes use of invariant feature de-
tection and matching. The feature detector finds large popu-
lations of features around the feature of interest. By matching
features across a stereo pair, as well as matching pairs before
and after robot motion, the tracker can quickly compute a 6-
DOF motion. In a static environment this 6-DOF transforma-
tion describes the motion of the tracked point. RANSAC is
used to provide robustness to errors during feature detection
and matching. Because the recovered motion is incremental,
compounding the transformations found by the tracker leads
to target drift over time. This is compensated by making use
of a shape based tracker.

The shape based tracker employs 3D terrain model registra-
tion based on nonlinear optimization. Model registration can
provide a strong cue for recovering 6-DOF motion if the mod-
els have sufficient shape and the optimization is initialized
sufficiently close to the solution. By using the output of the
feature based tracker to initialize the registration, we are able
to align the current target view to the original view, thereby
eliminating drift incurred by compounding the incremental
motions recovered by the feature based tracker.

The combined tracking system is capable of tracking user-
specified points for robotic navigation with centimeter level
accuracy over distances on the order of ten meters. This track-
ing system is a critical component of the integrated single cy-
cle instrument placement work demonstrated at NASA Ames
Research Center.

2. A TALE OF TWO TRACKERS

Our robot navigation and instrument placement system uses
two vision based tracking methods to provide fast, accurate
incremental updates to the target location estimate during
robot navigation as well as high precision error correction
when the rover reaches an intended science target. Both of
these tracking methods make the assumption that the target
and the scene around it do not change, i.e. that the world is
physically static. Lighting conditions may change, since our
system may operate autonomously for a few hours.

The first method is an appearance based method that uses the
SIFT algorithm[1] at its core. The SIFT algorithm is used to
reliably find interesting points in stereo cameras and to find

1



putative matches between image pairs before and after mo-
tion. Stereo cameras provide 3D point locations for matched
interest points in stereo views and matched 3D points are used
to recover a rigid transformation aligning the points. Robust
estimation makes the method tolerant of outliers and mis-
matches. Ultimately each target might be tracked using hun-
dreds or thousands of matched points, providing a high degree
of redundancy and accuracy.

Given two meshes generated from two different views, the
second tracker method makes use of a virtual range sensor
in order to determine depth at each correspondence point be-
tween the two meshes. By minimizing the difference between
the rendered depth at each point, we can extract a rigid trans-
formation that aligns the two models, thereby allowing us to
determine the coordinate transformation between views.

Our combined tracker takes advantage of both of these meth-
ods to provide an integrated visual tracking infrastructure
which is fast and robust during a traverse, and can provide
bounded error at the end of a target approach.

Feature based tracker

Many feature based trackers operate by matching a chosen
template to an area of interest in successive images. The
search is often done using an exhaustive correlation or con-
volution, which can be expensive when precise predictions
are not available or large camera motions must be tolerated.
These trackers may offer the user the flexibility to specify
the template, but the specified template may not be amenable
to tracking due to low visual texture or changing appearance
during motion. In addition, if the tracker only keeps track of
one nominal target point, it is brittle in the event of a mis-
match, and vulnerable to occlusions or changing viewpoints
or other physical constraints.

The appearance based tracking algorithm used in our system
uses large numbers of image features matched across stereo
pairs. Feature matching is done using the SIFT algorithm[1].
The SIFT algorithm consists of two steps. The first step is the
extraction of interest points from an image. Interest points are
local maxima in scale space, found by searching for points in
a Laplacian image pyramid[2] with higher values than neigh-
bors in ����� and the scale dimension. The interest operator
used by SIFT is invariant to rotation, translation, and spatial
scale[1]. Once these interest points are found, a local orienta-
tion is estimated. The local image patch is then used to com-
pute a feature vector, or descriptor, which is computed using
some edge statistics in the neighborhood of the interest point,
where the neighborhood is defined by the location, orienta-
tion, and scale recovered by the interest operator. This means
that a large number of interest points are identified in image
pairs under Euclidean or approximately Euclidean transfor-
mations in the images. The descriptors also tend to be fairly
robust, so that a nearest neighbor search in feature space tends
to find a large number of matched points in two images.

Our 3D SIFT based tracker uses features extraced from four
images–two stereo pairs–to recover the incremental motion
of the tracked target in the robot coordinate frame. We re-
fer to one stereo image pair as

�	��
 ��� 
 � . From these images
the SIFT algorithm extracts and matches features

�	�
 ��� 
 � be-
tween the images, providing matched pairs of image points� 
���� ��
 ��� �
�� � . The 3D location � 
 corresponding to the
matched pair � 
 is recovered through stereo,

� 
 ����� � 
 � (1)

By arbitrary choice, the SIFT descriptor for the left image
point

 

is taken as the descriptor for the 3D point � 
 .

When the next image pair
�	��
���� ��� 
�� � � is acquired, matched

features � 
!��� � � "�
!��� ��� �
����#� � are found and 3D points� 
!���$�%��� � 
!��� � are recovered. Using the SIFT descriptors
from � 
 and � 
�� � , putative matches can be found between the
3D points extracted before and after robot motion.

Once a set of putative 3D point matches are found, we es-
timate the 6-DOF transformation from one view to the next
using Horn’s method[3] and RANSAC[4]. Horn’s method
will find the least mean square rotation and translation be-
tween a set of matched points in closed form[3]. However,
because Horn’s method minimizes a second order cost func-
tion, errors (outliers) in SIFT matching either between image
pairs or between the 3D points can cause arbitrarily large er-
rors in the recovered transformation parameters. To identify
and eliminate outliers we use the robust estimation algorithm
RANSAC[4] to find the transformation that is consistent with
the largest number of points, or inliers.

Inliers are defined as those putative matches
� ��&('�)
 ���*&('�)
!��� �

such that +!+ ��&('�)
����-,/. 
����
 �*&('�)
 +�+1032
(2)

where
2

is a threshold. Currently we use
2 ��4

cm and repeat
the RANSAC loop for 5 �76#898

times, which takes negligi-
ble time since Horn’s method is very fast. RANSAC returns
the transformation with the largest consensus, and the list of
matches in the consensus set. To further improve the estimate
we use the consensus set to re-estimate the transform with all
inliers. If the set of inliers changes we continue to re-estimate
the transform until the consensus set converges. We denote
the resulting transformation by

. 
!���;:

and the inlier set by < .

The steps above are also shown in Figure 1.

Once the rigid transformation
. 
!���;:


is computed, the tracked
feature location is simply updated by applying the transfor-
mation to the target location

� 
�� �= � . 
����;:
 � 
= (3)

Note that mismatches may occur in two different steps in the
tracking algorithm. Mismatches between

�

and � 
 will lead

to erroneous coordinates for � 
 . Mismatches between points� &>'�)
 and � &('�)
�� � will lead to 3D point pairs which are not con-
sistent with a single rigid body motion. Both of these kinds
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Figure 1. SIFT based tracker diagram

of outliers are handled by the robust absolute orientation. No
explicit outlier rejection is needed in the 3D feature extraction
prior to solving for absolute orientation.

Uncertainty

As the feature based tracker tracks a science target, two mea-
sures are used to estimate the performance of the system. The
first is the uncertainty in the target location represented by a4@?A4

covariance matrix over the XYZ location of the tracked
feature, which is useful for geometric reasoning about the
precision of the target location estimate for camera pointing
and target handoff. The second is a single number represent-
ing a qualitative, overall confidence measure for the tracker
which is useful for planning and execution purposes and de-
tecting tracking failures.

The tracker uncertainty takes into consideration the initial tar-
get location specification as well as compounding the uncer-
tainties in all of the tracker updates. The initial target location
uncertainty is computed assuming a half-pixel standard devi-
ation in the user specified location in the reference camera
image, as well as an uncorrelated half-pixel standard devia-
tion in the stereo disparity matching in the other stereo cam-
era. The initial location and its covariance matrix are found
by taking the unscented transform[5] of equation (1) above
with � = �B� "�= ��� �= � � andC

DED �GFIH#JLKNM1K
(4)

with
F$�O6QPSR

to yield the 3D location � = and
4�?T4

covariance
matrix

C
U	U .

At each tracker update, the RANSAC method above is used
to find the set of inlying matches that can be used to compute
the dominant rigid transformation. However, Horn’s method
returns only a point estimate, without any information about
the uncertainty in the estimate. In order to compute the co-
variance of the estimator, we use bootstrap[6]. Analytic ap-
proaches to propagating uncertainties through Jacobians of
the norm minimized by Horn’s method do exist[7], but the
non-parametric approach we use is theoretically sound, triv-
ial to implement, and makes significant reuse of the estimator
code already implemented.

Bootstrap is a Monte Carlo method. To compute a bootstrap
estimate of the covariance of the absolute orientation esti-

Figure 2. Uncertainty in the 3D coordinates of the initial
target selection due to stereo errors

mate, we generate a population of matched point sets from the
inlier set < by sampling with replacement to yield V boot-
strap sets <XW . For each set of matches <�W , we compute the
transform

. W
 using Horn’s method and recover the transform
parameters YZW . Our current implementation recovers transla-
tion and Euler angles1, but other rotation representations are
equally feasible. From the population of estimates Y[W , an em-
pirical covariance is computed,C

\E\ � 6
V

]^
W"_ �

� Y W , Y :
 � � Y W , Y :
 � � (5)

where Y :
 is the transform parameters corresponding to the
optimal estimate

. 
!����:

. The covariance matrix for the up-

dated location of the feature is then given by an unscented
transform on the update

� 
!���= � . � Y 
 � � 
= (6)

with � 
= and

C 
U	U from the previous tracker update, and Y :

and

C 
\E\ from Horn’s method, RANSAC, and bootstrap. The
notation

. � Y 
 � indicates the rigid transformation parameter-
ized by the rotation and translation parameters Y 
 . Note that
because tracking is done in an incremental fashion, the co-
variance

C
U	U is monotonically growing during a tracking run,

i.e. the tracker accurately models the fact that incremental
updates with small errors will compound into a larger drift
over time. Our system typically has incremental errors on
the order of millimeters and milliradians per tracker update,
so that a single target approach accumulates only centimeters
of error. The 3D model registration step described below is
designed to recover from this potential drift.

In addition to the geometric uncertainty in target location rep-
resented by the covariance matrix

C 
U	U , the tracker maintains
a single confidence value as a qualitative measure of how
well the target is being tracked. This number is computed
assuming a simple function of the number of inliers found by

`
Euler angles can present problems due to singularities, and may not be

amenable to representation by a Gaussian (mean and covariance). However,
this work is applied to a surface rover with limited roll and pitch angles,
avoiding the singularities in the representation, and the absolute orientation
estimates tend to be highly overconstrained and yield very small covariance
matrices, so the representation only needs to be accurate over a small neigh-
borhood of the parameter space.
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Figure 3. Tracker result with confidence interval shown as
an ellipse around the tracked point. The tracker was

initialized with the upper left corner of a fiducial on a rock.
Note that the fiducial was not explicitly used in the tracking,

but placed to facilitate performance evaluation.

RANSAC above, that is the confidence a is given by

a �b6QP[��6dcfehg &ji kli monl) � (7)

where through experimentation we have set p �q4S8
, andr �s8Nt!6

. This confidence measure reflects the fact that if
fewer than p inliers are found, then the tracker uncertainty
should be low while if significantly more inliers are found
then the tracker confidence should be high.

These confidence measures are somewhat ad hoc, but are only
intended to capture some useful qualitative information about
tracker performance. The confidence is used by the onboard
executive to determine when the risk of losing a target is high
enough to warrant a change in activity, e.g. to approach a dif-
ferent target with higher expected utility. In our experiments
the tracker tends to either find a large number (hundreds) of
matches or very few, and the overall system typically does
what the rover operators would expect by identifying track-
ing failures and aborting when necessary.

Starting with the target location � 
= , covariance matrix

C
U#U ,

point locations � 
 and descriptors u 
 from the previous time
step, the tracker update proceeds as follows:

1. Find matching SIFT features
 
!���

and � 
!���
2. Recover point locations � 
����
3. Find putative matches between � 
 and � 
!���
4. Repeat M times:

(a) Choose 3 putative matches at random
(b) Find rigid transformation

. 
!���

(c) Find the number of inliers (consensus)

5. For the best consensus set < ,
(a) Compute Y : using matches <
(b) Find inliers < under transform

. � Y : �
(c) If inlier set changes, repeat

6. Compute confidence a based on
+ < + using (7)

7. Compute

C
\E\ using Bootstrap

8. Compute � 
!���= and

C 
!���U#U using (6)
9. Return � 
����= ,

C 
!���U#U and a

v
j

v
k
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i
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Figure 4. Each pixel in the range image is predicted by
rendering the corresponding mesh facet into a virtual range

sensor.

3D shape based tracker

The 3D shape based tracker uses terrain model registration to
recover 6-DOF motion from stereo cameras. Tracking is per-
formed by registering successively acquired terrain models of
the target area to the initially acquired model of the target. By
using an initial target template throughout the tracking cycle,
successful registration to the current view at each step pro-
vides an an estimate of the goal location that does not drift
over time.

For every pixel in the left camera image for which a corre-
spondence is found in the right camera image, our stereo al-
gorithm estimates the depth to that point. These depth esti-
mates are combined to produce a 3D model of the surface. If
two models of a surface are made from different locations, the
rigid transformation that aligns the two models can be used to
determine the coordinate transformation between views.

The surface models are represented by triangulated meshes
with verticies v and v�w . If the two 3D models contain some
region of overlap, there is a rigid transformation that aligns
the overlapping regions. We represent the rigid transforma-
tion using the parameter vector x �O� �����o� � �;yz��{��}| � � corre-
sponding to 3 translational and 3 rotational degrees of free-
dom. These parameters define a transformation matrix ~�� .
If x is the parameter describing the transformation between
surfaces v and v w , then for every pair of corresponding pointsv 
 and v�w
 the relationship

v w
 , ~ � v 
 ��8
(8)

holds. With real observations this equality will not hold ex-
actly.

Our mesh registration approach projects these two models
into a virtual range sensor view and minimizes the difference
between the rendered depths at each point. The rendering
takes � ��� � operations, where

�
is the number of pixels in the

virtual range sensor. For each triangle on the mesh v w , the
vertices v�w
 , v�w' , and v�w� are projected onto the image plane.
For every pixel inside that triangle, the location of the inter-
section of the camera ray �S� and the facet of the mesh is a
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point �	w
 , given by

� w
 � y 
 v w
 c y ' v w' c y � v w� (9)

with y 
 c y ' c y � �b6
. The depth to the intersection point is

the � coordinate in the camera frame,

� 
 �������� � w
 (10)

The vector of all depths � 
 is denoted � . The surface modelv�w does not move during registration, so � is a constant.

The depth to the point v 
 changes with transformation x .

� 
�� ~@� � y 
 v 
�c y ' v ' c y � v � �� 
 � x � � ������ � 
 (11)

We define a robust objective function which is the sum of the
absolute deviations between the projected depths:

� � x � � ^ + � 
 � x � , � 
 + (12)

Because the
� � x � has a local minima, we first perform a

coarse correlation search in order to narrow down the loca-
tion of the best solution. Our initial estimate of x , x�� comes
from the stereo SIFT-based tracker described earlier. Con-
sider that x is decomposed into rotational component � and
a translational component � . Furthermore, consider that � is
decomposed into:

� ��� �S� cf� �h� c �S� � (13)

where � � and � � are in the plane of the virtual range sen-
sor, and � � is the pointing direction of the sensor. Because a
search over the 6 dimensions of x is expensive, we make a
few approximations.

For small changes in � , � 
;� ������� � c�� � ��� � � �� � ��� � � ���N��� � cO  � . In other words, a change in transfor-
mation along the z-axis of the virtual range sensor by some
distance

� � changes
� 


by approximately the same amount.
Our initial estimate of � is approximately correct.

These two approximations allow us to perform the correlation
search across only two dimensions; the x-axis and y-axis of
the virtual range sensor.

For every
� � and

� � searched, the transformation x is com-
puted by translating initial estimate x = by

� � and
� � and by

translating in the directions of the x-axis and y-axis of the vir-
tual range sensor. The correction

� � to � = which minimizes
the objective function

� � � = c¡� ����� = c¡� ��� � = c¢� � ��� � � is
calculated as follows:� � �¢£$e uS¤ r ��� � 
 � � = c3� ����� = c3� ��� � = ��� � ��� (14)

As described above, the correlation search uses approximate
knowledge of the three orientation parameters to search only

(a) (b)

(c) (d)
Figure 5. Registration result: (a) hazcam image (b) range

image (c) depth error after range image correlation (d) depth
error after nonlinear optimization

over the sensor � and � coordinates, solving for the average
difference in � . Once the correlation search finds an approxi-
mate solution, we optimize over all 6 rigid transformation pa-
rameters using Nelder Mead[8], which is a general local non-
linear optimization method. Nelder Mead only requires a cost
function, not any derivative information, so the cost function
in equation (12) is used directly. In order to avoid problems
with early termination[8], we restart the Nelder Mead opti-
mization twice after it converges. Figure 5 shows an example
result of the depth error after Nelder Mead converges.

3. RESULTS

We ran the combined tracker through a simple test scenario
on the K9 rover[9] in the NASA Ames Marscape. The test
scenario was repeated over the course of September 22nd and
23rd, 2004. In the scenario, an operator selects three tar-
gets such that the straight-line distance from the rover’s arm
workspace at the starting position to the targets are approxi-
mately 5, 7.5, and 10 meters. The rover is then commanded to
navigate to each of the targets in turn, while tracking their lo-
cation with the combined tracker. The rover avoids obstacles
using the CLARAty[10] navigator package, which is based
on the Morphin algorithm[11].

After the rover arrives at each of the rocks, it is commanded
to move its arm such that the CHAMP[12] camera contacts
the rock as close as possible to the tracked target location.
The instrument placement code analyzes the scene before the
arm is moved, to determine the closest point on the rock that
is safe for the CHAMP to touch, and plans a collision-free
path for the arm.

Tables 1 and 3 show the results for these two days of testing.
For each target, we record the elapsed time of the traverse
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(which can be large if several obstacles have to be driven
around), the accuracy of the target as tracked by the feature
based tracker relative to 3-D models generated by the same
camera pair as is used in the tracking, and the accuracy of the
3-D shape-based tracker used for handoff from one pair of
cameras to another. The placement accuracy is also recorded,
though the placement error can be arbitrarily large since the
system places a higher priority on safety than on accuracy of
placement. Placement figures are not available for Septem-
ber 22nd; a motor failure in one of the arm joints prevented
successful placement.

The only failure in tracking occured in the feature based
tracker for the second rock on September 23rd. In this case,
the tracker failed just as the rover approached the rock and in-
troduced a large cast shadow into the scene. Once the tracker
was unable to find a transformation between subsequent im-
ages, it stopped updating the target location and fell back to
dead reckoning. After the navigation was finished, the shape-
based tracker was able to recover the target with accuracy
comparable to the other experiments.

Target 1 (5m) 2 (7.5m) 3 (10m)
Time to reach target 21 mins +42 mins +17 mins
Tracker accuracy 0.68 cm 0.29 cm 1.3 cm
Hand-off accuracy 0.5 cm 2.7 cm 1.7 cm
Placement accuracy N/A N/A N/A

Table 1. 9/22/2004 Performance

Target 1 Target 2 Target 3

Table 2. 9/22/2004 Tracker

Target 1 (5m) 2 (7.5m) 3 (10m)
Time to reach target 25 mins +27 mins +23 mins
Tracker accuracy

�
0.3 cm failed 1.7 cm

Hand-off accuracy 1.3 cm
�

1.6 cm 3.2 cm
Placement accuracy

�
6.3 cm

�
11 cm

�
3 cm

Table 3. 9/23/2004 Performance

4. CONCLUSIONS

We started this work in an effort to increase the reliability of
our previous system, which was based largely on the shape
based method alone. We found that the shape based method

Target 1 Target 2 Target3

Table 4. 9/23/2004 Tracker

was quite reliable so long as the initial estimate of the tar-
get location was not incorrect by more than approximately
half the width of the rock being tracked. Unfortunately, dead
reckoning errors often led to our initial estimates being be-
yond this error.

Once we started developing the feature tracker based on SIFT,
we found that it was reliable enough to use as the primary
tracker in our navigation system, because the cumulative er-
ror over a traverse of less than 10 meters was typically well
within the half-rock tolerance that the shape based tracker
generally requires. We decided therefore to use the shape
based tracker only as the last step, to hand the target off from
the long-range cameras used for approach to the front cam-
eras used for manipulation and instrument placement. Using
the shape based tracker as the last step ensures that the rover
is indeed using the same point on the designated rock for in-
strument placement as was initially chosen by the operators,
since this point is chosen relative to another 3-D mesh of the
rock, rather than relative to the rover or to another arbitrary
coordinate frame. Since this change in usage, we’ve found
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the system to be quite reliable. The two components have
complementary strengths that yield a robust tracking system.

Since the experiments outlined in section 3, we have demon-
strated the system operating several times, often tracking as
many as five targets as the rover moves. To this point, we have
executed at least one run where the rover has navigated to five
targets in turn, and placed the CHAMP on each of the rocks
with very little tracking error. In some instances the feature
based tracker has lost the target due to occlusions, and was
able to reaquire the target after the occlusion was removed.
The fact that the tracker is able to provide a confidence mea-
sure allows the rover to fall back to dead reckoning if the
confidence drops, and allows the rover’s executive to change
the course of action entirely if a target is lost. The tracker
performs so well, however, that we typically have to intro-
duce failures into the system in order to test the ability of the
executive to cope with tracking failures.
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